Isomorphism

From LLWiki
(Difference between revisions)
Jump to: navigation, search
(stub)
 
m (added template stub)
Line 1: Line 1:
  +
{{stub}}
  +
 
Two formulas <math>A</math> and <math>B</math> are isomorphic, when there are two proofs <math>\pi</math> of <math>A \vdash B</math> and <math>\rho</math> of <math>B \vdash A</math> such that eliminating the cut on <math>A</math> in
 
Two formulas <math>A</math> and <math>B</math> are isomorphic, when there are two proofs <math>\pi</math> of <math>A \vdash B</math> and <math>\rho</math> of <math>B \vdash A</math> such that eliminating the cut on <math>A</math> in
   

Revision as of 14:38, 16 October 2009

This page is a stub and needs more content.


Two formulas A and B are isomorphic, when there are two proofs π of A \vdash B and ρ of B \vdash A such that eliminating the cut on A in

\AxRule{}\VdotsRule{\pi}{A \vdash B}\AxRule{}\VdotsRule{\rho}{B \vdash A}\LabelRule{\rulename{cut}}\BinRule{B\vdash B}\DisplayProof

leads to an η-expansion of

\LabelRule{\rulename{ax}}\NulRule{B\vdash B}\DisplayProof,

and eliminating the cut on B in

\AxRule{}\VdotsRule{\pi}{A \vdash B}\AxRule{}\VdotsRule{\rho}{B \vdash A}\LabelRule{\rulename{cut}}\BinRule{A\vdash A}\DisplayProof

leads to an η-expansion of

\LabelRule{\rulename{ax}}\NulRule{A\vdash A}\DisplayProof.

Some well known isomorphisms of linear logic are the following ones:

  • A\tens B \limp C \cong A\limp B \limp C
Personal tools