# Mix

The usual notion of $\rulename{Mix}$ is the binary version of the rule but a nullary version also exists.

## Binary $\rulename{Mix}$ rule $\AxRule{\vdash\Gamma} \AxRule{\vdash\Delta} \LabelRule{Mix_2} \BinRule{\vdash\Gamma,\Delta} \DisplayProof$

The $\rulename{Mix_2}$ rule is equivalent to $\bot\vdash\one$: $\LabelRule{\one} \NulRule{\vdash\one} \LabelRule{\one} \NulRule{\vdash\one} \LabelRule{Mix_2} \BinRule{\vdash\one,\one} \DisplayProof \qquad \AxRule{\vdash\Gamma} \LabelRule{\bot} \UnaRule{\vdash\Gamma,\bot} \AxRule{\vdash\one,\one} \LabelRule{\rulename{cut}} \BinRule{\vdash\Gamma,\one} \AxRule{\vdash\Delta} \LabelRule{\bot} \UnaRule{\vdash\Delta,\bot} \LabelRule{\rulename{cut}} \BinRule{\vdash\Gamma,\Delta} \DisplayProof$

They are also equivalent to the principle $A\tens B \vdash A\parr B$: $\LabelRule{\one} \NulRule{\vdash\one} \LabelRule{\one} \NulRule{\vdash\one} \LabelRule{\tens} \BinRule{\vdash\one\tens\one} \AxRule{\vdash\bot\parr\bot,\one\parr\one} \LabelRule{\rulename{cut}} \BinRule{\vdash\one\parr\one} \LabelRule{\rulename{ax}} \NulRule{\vdash\bot,\one} \LabelRule{\rulename{ax}} \NulRule{\vdash\bot,\one} \LabelRule{\tens} \BinRule{\vdash\bot\tens\bot,\one,\one} \LabelRule{\rulename{cut}} \BinRule{\vdash\one,\one} \DisplayProof \qquad \LabelRule{\rulename{ax}} \NulRule{\vdash A\orth,A} \LabelRule{\rulename{ax}} \NulRule{\vdash B\orth,B} \LabelRule{Mix_2} \BinRule{\vdash A\orth,A,B\orth,B} \LabelRule{\parr} \UnaRule{\vdash A\orth,B\orth,A\parr B} \LabelRule{\parr} \UnaRule{\vdash A\orth\parr B\orth,A\parr B} \DisplayProof$

## Nullary $\rulename{Mix}$ rule $\LabelRule{Mix_0} \NulRule{\vdash} \DisplayProof$

The $\rulename{Mix_0}$ rule is equivalent to $\one\vdash\bot$: $\LabelRule{Mix_0} \NulRule{\vdash} \LabelRule{\bot} \UnaRule{\vdash\bot} \LabelRule{\bot} \UnaRule{\vdash\bot,\bot} \DisplayProof \qquad \LabelRule{\one} \NulRule{\vdash\one} \AxRule{\vdash\bot,\bot} \LabelRule{\rulename{cut}} \BinRule{\vdash\bot} \LabelRule{\one} \NulRule{\vdash\one} \LabelRule{\rulename{cut}} \BinRule{\vdash} \DisplayProof$

The nullary $\rulename{Mix}$ acts as a unit for the binary one: $\AxRule{\vdash\Gamma} \LabelRule{Mix_0} \NulRule{\vdash} \LabelRule{Mix_2} \BinRule{\vdash\Gamma} \DisplayProof$

If π is a proof which uses no $\bot$ rule and no weakening rule, then (up to the simplification of the pattern $\rulename{Mix_0}/\rulename{Mix_2}$ above into nothing) π is either reduced to a $\rulename{Mix_0}$ rule or does not contain any $\rulename{Mix_0}$ rule.