Semantics

From LLWiki
(Difference between revisions)
Jump to: navigation, search
(Additive structure: diagonal)
m (notation for isomorphismes \cong instead of \sim)
Line 6: Line 6:
 
\begin{array}{rclcrcl}
 
\begin{array}{rclcrcl}
 
A\biorth &=& A\\
 
A\biorth &=& A\\
(A\tens B)\orth &\sim& A\orth\parr B\orth &\quad& \one\orth &\sim& \bot\\
+
(A\tens B)\orth &\cong& A\orth\parr B\orth &\quad& \one\orth &\cong& \bot\\
(A\parr B)\orth &\sim& A\orth\tens B\orth &\quad& \bot\orth &\sim& \one\\
+
(A\parr B)\orth &\cong& A\orth\tens B\orth &\quad& \bot\orth &\cong& \one\\
(A\with B)\orth &\sim& A\orth\plus B\orth &\quad& \top\orth &\sim& \zero\\
+
(A\with B)\orth &\cong& A\orth\plus B\orth &\quad& \top\orth &\cong& \zero\\
(A\plus B)\orth &\sim& A\orth\with B\orth &\quad& \zero\orth &\sim& \top\\
+
(A\plus B)\orth &\cong& A\orth\with B\orth &\quad& \zero\orth &\cong& \top\\
(\oc A)\orth &\sim& \wn A\orth\\
+
(\oc A)\orth &\cong& \wn A\orth\\
(\wn A)\orth &\sim& \oc A\orth\\[1ex]
+
(\wn A)\orth &\cong& \oc A\orth\\[1ex]
A\limp B &\sim& A\orth\parr B\\
+
A\limp B &\cong& A\orth\parr B\\
A\limp B &\sim& B\orth\limp A\orth\\
+
A\limp B &\cong& B\orth\limp A\orth\\
 
\end{array}
 
\end{array}
 
</math>
 
</math>
Line 21: Line 21:
 
<math>
 
<math>
 
\begin{array}{rcl}
 
\begin{array}{rcl}
A\tens\one &\sim& \one\tens A\sim A\\
+
A\tens\one &\cong& \one\tens A\cong A\\
A\parr\bot &\sim& \bot\parr A\sim A\\
+
A\parr\bot &\cong& \bot\parr A\cong A\\
A\with\top &\sim& \top\with A\sim A\\
+
A\with\top &\cong& \top\with A\cong A\\
A\plus\zero &\sim&\zero\plus A\sim A\\
+
A\plus\zero &\cong&\zero\plus A\cong A\\
 
\end{array}
 
\end{array}
 
</math>
 
</math>
Line 32: Line 32:
 
<math>
 
<math>
 
\begin{array}{rcl}
 
\begin{array}{rcl}
A\tens B &\sim& B\tens A\\
+
A\tens B &\cong& B\tens A\\
A\parr B &\sim& B\parr A\\
+
A\parr B &\cong& B\parr A\\
A\with B &\sim& B\with A\\
+
A\with B &\cong& B\with A\\
A\plus B &\sim& B\plus A\\
+
A\plus B &\cong& B\plus A\\
 
\end{array}
 
\end{array}
 
</math>
 
</math>
Line 43: Line 43:
 
<math>
 
<math>
 
\begin{array}{rcl}
 
\begin{array}{rcl}
(A\tens B)\tens C &\sim& A\tens(B\tens C)\\
+
(A\tens B)\tens C &\cong& A\tens(B\tens C)\\
(A\parr B)\parr C &\sim& A\parr(B\parr C)\\
+
(A\parr B)\parr C &\cong& A\parr(B\parr C)\\
(A\with B)\with C &\sim& A\with(B\with C)\\
+
(A\with B)\with C &\cong& A\with(B\with C)\\
(A\plus B)\plus C &\sim& A\plus(B\plus C)\\
+
(A\plus B)\plus C &\cong& A\plus(B\plus C)\\
 
\end{array}
 
\end{array}
 
</math>
 
</math>
Line 62: Line 62:
 
<math>
 
<math>
 
\begin{array}{rclcrcl}
 
\begin{array}{rclcrcl}
A\tens(B\plus C) &\sim& (A\tens B)\plus(A\tens C) &\quad&
+
A\tens(B\plus C) &\cong& (A\tens B)\plus(A\tens C) &\quad&
A\tens\zero &\sim& \zero\\
+
A\tens\zero &\cong& \zero\\
A\parr(B\with C) &\sim& (A\parr B)\with(A\parr C) &\quad&
+
A\parr(B\with C) &\cong& (A\parr B)\with(A\parr C) &\quad&
A\parr\top &\sim& \top\\
+
A\parr\top &\cong& \top\\
 
\end{array}
 
\end{array}
 
</math>
 
</math>
Line 107: Line 107:
 
<math>
 
<math>
 
\begin{array}{rclcrcl}
 
\begin{array}{rclcrcl}
\oc(A\with B) &\sim& \oc A\tens\oc B &\quad& \oc\top &\sim& \one\\
+
\oc(A\with B) &\cong& \oc A\tens\oc B &\quad& \oc\top &\cong& \one\\
\wn(A\plus B) &\sim& \wn A\parr\wn B &\quad& \wn\zero &\sim& \bot\\
+
\wn(A\plus B) &\cong& \wn A\parr\wn B &\quad& \wn\zero &\cong& \bot\\
 
\end{array}
 
\end{array}
 
</math>
 
</math>

Revision as of 10:45, 19 October 2009

Linear Logic has numerous semantics some of which are described in details in the next sections. We give here an overview of the common properties that one may find in most of these models. We will denote by A\longrightarrow B the fact that there is a canonical morphism from A to B and by A˜B the fact that there is a canonical isomorphism between A and B. By "canonical" we mean that these (iso)morphisms are natural transformations.

Contents

Linear negation


\begin{array}{rclcrcl}
  A\biorth &=& A\\
  (A\tens B)\orth &\cong& A\orth\parr B\orth &\quad& \one\orth  &\cong& \bot\\
  (A\parr B)\orth &\cong& A\orth\tens B\orth &\quad& \bot\orth  &\cong& \one\\
  (A\with B)\orth &\cong& A\orth\plus B\orth &\quad& \top\orth  &\cong& \zero\\
  (A\plus B)\orth &\cong& A\orth\with B\orth &\quad& \zero\orth &\cong& \top\\
  (\oc A)\orth &\cong& \wn A\orth\\
  (\wn A)\orth &\cong& \oc A\orth\\[1ex]
  A\limp B &\cong& A\orth\parr B\\
  A\limp B &\cong& B\orth\limp A\orth\\
\end{array}

Neutrals


\begin{array}{rcl}
  A\tens\one  &\cong& \one\tens A\cong A\\
  A\parr\bot  &\cong& \bot\parr A\cong A\\
  A\with\top  &\cong& \top\with A\cong A\\
  A\plus\zero &\cong&\zero\plus A\cong A\\
\end{array}

Commutativity


\begin{array}{rcl}
  A\tens B &\cong& B\tens A\\
  A\parr B &\cong& B\parr A\\
  A\with B &\cong& B\with A\\
  A\plus B &\cong& B\plus A\\
\end{array}

Associativity


\begin{array}{rcl}
  (A\tens B)\tens C &\cong& A\tens(B\tens C)\\
  (A\parr B)\parr C &\cong& A\parr(B\parr C)\\
  (A\with B)\with C &\cong& A\with(B\with C)\\
  (A\plus B)\plus C &\cong& A\plus(B\plus C)\\
\end{array}

Multiplicative semi-distributivity


\begin{array}{rcl}
  A\tens(B\parr C) &\longrightarrow& (A\tens B)\parr C\\
\end{array}

Multiplicative-additive distributivity


\begin{array}{rclcrcl}
  A\tens(B\plus C) &\cong& (A\tens B)\plus(A\tens C) &\quad&
  A\tens\zero &\cong& \zero\\
  A\parr(B\with C) &\cong& (A\parr B)\with(A\parr C) &\quad&
  A\parr\top &\cong& \top\\
\end{array}

Additive structure


\begin{array}{rcl}
  A\with B \longrightarrow A &\quad& A\with B \longrightarrow B\\
  (C\limp A)\with(C\limp B) &\longrightarrow& C\limp(A\with B)\\
  A &\longrightarrow& A\with A\\
  A \longrightarrow A\plus B &\quad& B \longrightarrow A\plus B\\
  (A\limp C)\with(B\limp C) &\longrightarrow& (A\plus B)\limp C\\
  A\plus A &\longrightarrow& A\\
\end{array}

Exponential structure


\begin{array}{rclcrcl}
  \oc A &\longrightarrow& A &\quad& A&\longrightarrow&\wn A\\
  \oc A &\longrightarrow& 1 &\quad& \bot &\longrightarrow& \wn A\\
  \oc A &\longrightarrow& \oc A\tens\oc A &\quad& 
  \wn A\parr\wn A &\longrightarrow& \wn A\\
  \oc A &\longrightarrow& \oc\oc A &\quad& \wn\wn A &\longrightarrow& \wn A\\
\end{array}

Monoidality of exponential


\begin{array}{rclcrcl}
  \oc A\tens\oc B &\longrightarrow& \oc(A\tens B) &\quad&
  \one &\longrightarrow& \oc\one\\
\end{array}

The exponential isomorphism


\begin{array}{rclcrcl}
  \oc(A\with B) &\cong& \oc A\tens\oc B &\quad& \oc\top &\cong& \one\\
  \wn(A\plus B) &\cong& \wn A\parr\wn B &\quad& \wn\zero &\cong& \bot\\
\end{array}

Personal tools