Intuitionistic linear logic

From LLWiki
Revision as of 23:03, 7 January 2009 by Olivier Laurent (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Intuitionistic Linear Logic (ILL) is the intuitionnistic restriction of linear logic: the sequent calculus of ILL is obtained from the two-sided sequent calculus of linear logic by constraining sequents to have exactly one formula on the right-hand side: \Gamma\vdash A.

The connectives \parr, \bot and \wn are not available anymore, but the linear implication \limp is.

Sequent Calculus


\LabelRule{\textit{ax}}
\NulRule{A\vdash A}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash A}
\AxRule{\Delta,A\vdash C}
\LabelRule{\textit{cut}}
\BinRule{\Gamma,\Delta\vdash C}
\DisplayProof



\AxRule{\Gamma\vdash A}
\AxRule{\Delta\vdash B}
\LabelRule{\tens R}
\BinRule{\Gamma,\Delta\vdash A\tens B}
\DisplayProof
\qquad
\AxRule{\Gamma,A,B\vdash C}
\LabelRule{\tens L}
\UnaRule{\Gamma,A\tens B\vdash C}
\DisplayProof
\qquad
\LabelRule{\one R}
\NulRule{{}\vdash\one}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash C}
\LabelRule{\one L}
\UnaRule{\Gamma,\one\vdash C}
\DisplayProof



\AxRule{\Gamma,A\vdash B}
\LabelRule{\limp R}
\UnaRule{\Gamma\vdash A\limp B}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash A}
\AxRule{\Delta,B\vdash C}
\LabelRule{\limp L}
\BinRule{\Gamma,\Delta,A\limp B\vdash C}
\DisplayProof



\AxRule{\Gamma\vdash A}
\AxRule{\Gamma\vdash B}
\LabelRule{\with R}
\BinRule{\Gamma\vdash A\with B}
\DisplayProof
\qquad
\AxRule{\Gamma,A\vdash C}
\LabelRule{\with_1 L}
\UnaRule{\Gamma,A\with B\vdash C}
\DisplayProof
\qquad
\AxRule{\Gamma,B\vdash C}
\LabelRule{\with_2 L}
\UnaRule{\Gamma,A\with B\vdash C}
\DisplayProof
\qquad
\LabelRule{\top R}
\NulRule{\Gamma\vdash\top}
\DisplayProof



\AxRule{\Gamma\vdash A}
\LabelRule{\plus_1 R}
\UnaRule{\Gamma\vdash A\plus B}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash B}
\LabelRule{\plus_2 R}
\UnaRule{\Gamma\vdash A\plus B}
\DisplayProof
\qquad
\AxRule{\Gamma,A\vdash C}
\AxRule{\Gamma,B\vdash C}
\LabelRule{\plus L}
\BinRule{\Gamma,A\plus B\vdash C}
\DisplayProof
\qquad
\LabelRule{\zero L}
\NulRule{\Gamma,\zero\vdash C}
\DisplayProof



\AxRule{\oc{\Gamma}\vdash A}
\LabelRule{\oc R}
\UnaRule{\oc{\Gamma}\vdash\oc{A}}
\DisplayProof
\qquad
\AxRule{\Gamma,A\vdash C}
\LabelRule{\oc d L}
\UnaRule{\Gamma,\oc{A}\vdash C}
\DisplayProof
\qquad
\AxRule{\Gamma,\oc{A},\oc{A}\vdash C}
\LabelRule{\oc c L}
\UnaRule{\Gamma,\oc{A}\vdash C}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash C}
\LabelRule{\oc w L}
\UnaRule{\Gamma,\oc{A}\vdash C}
\DisplayProof



\AxRule{\Gamma\vdash A}
\LabelRule{\forall R}
\UnaRule{\Gamma\vdash \forall\alpha A}
\DisplayProof
\qquad
\AxRule{\Gamma,A[\tau/\alpha]\vdash C}
\LabelRule{\forall L}
\UnaRule{\Gamma,\forall\alpha A\vdash C}
\DisplayProof
\qquad
\AxRule{\Gamma\vdash A[\tau/\alpha]}
\LabelRule{\exists R}
\UnaRule{\Gamma\vdash\exists\alpha A}
\DisplayProof
\qquad
\AxRule{\Gamma,A\vdash C}
\LabelRule{\exists L}
\UnaRule{\Gamma,\exists\alpha A\vdash C}
\DisplayProof

with α not free in Γ,C in the rules \forall R and \exists L.

The intuitionistic fragment of linear logic

In order to characterize intuitionistic linear logic inside linear logic, we define the intuitionistic restriction of linear formulas:


J ::= X \mid J\tens J \mid \one \mid J\limp J \mid J\with J \mid \top \mid J\plus J \mid \zero \mid \oc{J} \mid \forall\alpha J \mid \exists\alpha J

JLL is the fragment of linear logic obtained by restriction to intuitionistic formulas.

Theorem (JLL and ILL)

\Gamma\vdash A is provable in ILL1 if and only if it is provable in JLL1.

Proof.  The first direction is immediate since ILL1 is included in JLL1.

For the second direction, we consider a cut-free proof of \Gamma\vdash A in JLL1. We prove by induction on the length of such a proof that it belongs to ILL1.


This result is still valid with units from ILL1 into JLL1. In the opposite direction, it holds with \one but not anymore with \top and \zero. {}\vdash((X\limp Y)\limp\zero)\limp(X\tens\top) is provable in JLL1:


\LabelRule{\textit{ax}}
\NulRule{X\vdash X}
\LabelRule{\top R}
\NulRule{{}\vdash Y,\top}
\LabelRule{\tens R}
\BinRule{X\vdash Y,X\tens\top}
\LabelRule{\limp R}
\UnaRule{{}\vdash X\limp Y,X\tens\top}
\LabelRule{\zero L}
\NulRule{\zero\vdash {}}
\LabelRule{\limp L}
\BinRule{(X\limp Y)\limp\zero\vdash X\tens\top}
\LabelRule{\limp R}
\UnaRule{{}\vdash((X\limp Y)\limp\zero)\limp(X\tens\top)}
\DisplayProof

but not in ILL1.

Personal tools