GoI for MELL: exponentials

From LLWiki
(Difference between revisions)
Jump to: navigation, search
(Creation of the page : generalities on Hilbert spaces tensor product)
 
(The tensor product of Hilbert spaces: presentation)
Line 1: Line 1:
= The tensor product of Hilbert spaces</math> =
+
= The tensor product of Hilbert spaces =
   
 
Recall that <math>(e_k)_{k\in\mathbb{N}}</math> is the canonical basis of <math>H=\ell^2(\mathbb{N})</math>. The space <math>H\tens H</math> is the collection of sequences <math>(x_{np})_{n,p\in\mathbb{N}}</math> of complex numbers such that: <math>\sum_{n,p}|x_{np}|^2</math> converges. The scalar product is defined just as before:
 
Recall that <math>(e_k)_{k\in\mathbb{N}}</math> is the canonical basis of <math>H=\ell^2(\mathbb{N})</math>. The space <math>H\tens H</math> is the collection of sequences <math>(x_{np})_{n,p\in\mathbb{N}}</math> of complex numbers such that: <math>\sum_{n,p}|x_{np}|^2</math> converges. The scalar product is defined just as before:
 
: <math>\langle (x_{np}), (y_{np})\rangle = \sum_{n,p} x_{np}\bar y_{np}</math>.
 
: <math>\langle (x_{np}), (y_{np})\rangle = \sum_{n,p} x_{np}\bar y_{np}</math>.
 
The canonical basis of <math>H\tens H</math> is denoted <math>(e_{ij})_{i,j\in\mathbb{N}}</math> where <math>e_{ij}</math> is the (doubly indexed) sequence <math>(e_{ijnp})_{n,p\in\mathbb{N}}</math> defined by:
 
: <math>e_{ijnp} = \delta_{in}\delta_{jp}</math> (all terms are null but the one at index <math>(i,j)</math> which is 1).
 
   
 
If <math>x = (x_n)_{n\in\mathbb{N}}</math> and <math>y = (y_p)_{p\in\mathbb{N}}</math> are vectors in <math>H</math> then their tensor is the sequence:
 
If <math>x = (x_n)_{n\in\mathbb{N}}</math> and <math>y = (y_p)_{p\in\mathbb{N}}</math> are vectors in <math>H</math> then their tensor is the sequence:
 
: <math>x\tens y = (x_ny_p)_{n,p\in\mathbb{N}}</math>.
 
: <math>x\tens y = (x_ny_p)_{n,p\in\mathbb{N}}</math>.
   
In particular we have: <math>e_{ij} = e_i\tens e_j</math> and we can write:
+
In particular if we define: <math>e_{np} = e_n\tens e_p</math> so that <math>e_{np}</math> is the (doubly indexed) sequence of complex numbers given by <math>e_{npij} = \delta_{ni}\delta_{pj}</math> then <math>(e_{np})</math> is a hilbertian basis of <math>H\tens H</math>: the sequence <math>x=(x_{np})</math> may be written:
: <math>x\tens y = \left(\sum_n x_ne_n\right)\left(\sum_p y_pe_p\right) =
+
: <math>x = \sum_{n,p\in\mathbb{N}}x_{np}\,e_{np}
\sum_{n,p} x_ny_p e_n\tens e_p = \sum_{n,p} x_ny_p e_{np}</math>
+
= \sum_{n,p\in\mathbb{N}}x_{np}\,e_n\tens e_p</math>.
  +
By bilinearity of tensor we have:
  +
: <math>x\tens y = \left(\sum_n x_ne_n\right)\tens\left(\sum_p y_pe_p\right) =
  +
\sum_{n,p} x_ny_p\, e_n\tens e_p = \sum_{n,p} x_ny_p\,e_{np}</math>

Revision as of 12:20, 5 June 2010

The tensor product of Hilbert spaces

Recall that (e_k)_{k\in\mathbb{N}} is the canonical basis of H=\ell^2(\mathbb{N}). The space H\tens H is the collection of sequences (x_{np})_{n,p\in\mathbb{N}} of complex numbers such that:

| xnp | 2
n,p

converges. The scalar product is defined just as before:

\langle (x_{np}), (y_{np})\rangle = \sum_{n,p} x_{np}\bar y_{np}.

If x = (x_n)_{n\in\mathbb{N}} and y = (y_p)_{p\in\mathbb{N}} are vectors in H then their tensor is the sequence:

x\tens y = (x_ny_p)_{n,p\in\mathbb{N}}.

In particular if we define: e_{np} = e_n\tens e_p so that enp is the (doubly indexed) sequence of complex numbers given by enpij = δniδpj then (enp) is a hilbertian basis of H\tens H: the sequence x = (xnp) may be written:

x = \sum_{n,p\in\mathbb{N}}x_{np}\,e_{np}
          = \sum_{n,p\in\mathbb{N}}x_{np}\,e_n\tens e_p.

By bilinearity of tensor we have:

x\tens y = \left(\sum_n x_ne_n\right)\tens\left(\sum_p y_pe_p\right) = 
  \sum_{n,p} x_ny_p\, e_n\tens e_p = \sum_{n,p} x_ny_p\,e_{np}
Personal tools