Relational semantics
(→Monoidal structure) |
(→The category of sets and relations) |
||
Line 6: | Line 6: | ||
It is the category <math>\mathbf{Rel}</math> whose objects are sets, and such that <math>\mathbf{Rel}(X,Y)=\mathcal P(X\times Y)</math>. Composition is the ordinary composition of relations: given <math>s\in\mathbf{Rel}(X,Y)</math> and <math>t\in\mathbf{Rel}(Y,Z)</math>, one |
It is the category <math>\mathbf{Rel}</math> whose objects are sets, and such that <math>\mathbf{Rel}(X,Y)=\mathcal P(X\times Y)</math>. Composition is the ordinary composition of relations: given <math>s\in\mathbf{Rel}(X,Y)</math> and <math>t\in\mathbf{Rel}(Y,Z)</math>, one |
||
− | sets |
+ | sets <math>t\circ s=\set{(a,c)\in X\times Z}{\exists b\in Y\ (a,b)\in s\ \text{and}\ (b,c)\in t}</math> and the identity morphism is the diagonal relation <math>\mathsf{Id}_X=\set{(a,a)}{a\in X}</math>. |
− | |||
− | <math>t\circ s=\set{(a,c)\in X\times Z}{\exists b\in Y\ (a,b)\in s\ \text{and}\ (b,c)\in t}</math> |
||
− | |||
− | and the identity morphism is the diagonal relation <math>\mathsf{Id}_X=\set{(a,a)}{a\in X}</math>. |
||
An isomorphism in the category <math>\mathbf{Rel}</math> is a relation which is a bijection, as easily checked. |
An isomorphism in the category <math>\mathbf{Rel}</math> is a relation which is a bijection, as easily checked. |
Revision as of 15:23, 16 March 2009
Relational semantics
This is the simplest denotational semantics of linear logic. It consists in interpreting a formula A as a set A * and a proof π of A as a subset π * of A * .
The category of sets and relations
It is the category whose objects are sets, and such that
. Composition is the ordinary composition of relations: given
and
, one
sets
and the identity morphism is the diagonal relation
.
An isomorphism in the category is a relation which is a bijection, as easily checked.
Monoidal structure
The tensor product is the usual cartesian product of sets (which is not a cartesian product in the category
in the categorical sense). It is a bifunctor: given
(for i = 1,2), one sets
. The unit of this tensor product is
where * is an arbitrary element.
For defining a monoidal category, it is not sufficient to provide the definition of the tensor product functor and its unit
, one has also to provide natural isomorphisms
,
(left and right neutrality of
for
) and
(associativity of
). All these isomorphisms have to satisfy a number of commutations. In the present case, they are defined in the obvious way.
This monoidal category is symmetric, meaning that it is endowed with an additional natural isomorphism
, also subject to some commutations. Here, again, this isomorphism is defined in the obvious way (symmetry of the cartesian product). So, to be precise, the SMCC (symmetric monoidal closed category)
is the tuple
, but we shall simply denote it as
for simplicity.
The SMCC is closed. This means that, given any object X of
(a set), the functor
(from
to
) admits a right adjoint
(from
to
). In other words, for any objects X and Y, we are given an object
and a morphism
with the following universal property: for any morphism
, there is a unique morphism
such that
.
The definition of all these data is quite simple in :
,
and
.